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General Layout of an Electro-Mechanical  Drive System(Motion-Control-System: MCS) 

Generation of Target Values 

Motion Controller Power 
electronics 

Gear Box Mechanism Manipulation 
Device Process Motor 

Folie 3 / 33 
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Mechanisms 

Mechanisms 
 

• are classical mechanical means to realize complex motions in diferent types of 
machines for texttile engineering, packaging and production 

• Are often the heart of the machine that determines the productivity and 
efficiency of the fulfillment of the technological process 

• Are more and more used in combination with  Motion-Control-Systemes in order 
to increase flexibility and productivity. 

 
… and 
 
• will be completely replaced by Motion-Control-Systems in future ??? 

Folie 4 / 33 and Motion-Control-Systeme (MCS) 
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Disadvantages of Mechanims with Motion-Control-Systems  

Limitations in Flexibility  
The more specialized a mechanism is optimized for a specific operating situation, 
the worse it will generally be appropriate for other operating cases. 
 
Design and Development Effort 
MCS / Mechanism combinations require  higher development costs and specialized 
control engineering expertise. 
 
Requirements regarding the control behaviour of a Motion-Control-System  
MCS / UG combinations pose special demands on the control behavior of a motion 
control system which often preclude standard controllers.  

Folie 5 / 33 
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Useful Effects of MCS/Mechanism-Combinations (I)  Folie 6 / 33 

Motion transmission and motion conversion 
- Simple motion transfer and / or conversion of the usual drive movement "rotation" of 

servo motors in a possibly desired output flow type “translation“. 
- Use of a mechanism with approximately linear transmission ratio in a limited range of 

motion as a replacement for an upstream linear reduction gear. 

Motion limitation through dead center positions 
- Simple, safe and accurate motion limitation of working elements by mechanisms with 

defined dead center positions, such as a crank-rocker mechanism. 

Link guidance 
- Guidance of working elements  - eg. to desired trajectories – through guidance 

mechanisms that ensure precise motions with minimized deviations during operation. 
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Useful Effects of MCS/Mechanism-Combinations (II)  Folie 7 / 33 

Drive relief under dynamic operating load 

Reduction of peak values of the required driving torque based on dynamic – i.e. inertia - 
effects using the following remedies: 
- Reduction of the motor torque based on the reduction of the motor accelerations. 
- Reduction of the motor torque based on producing high transmission ratios near to the 

dead center positions of the mechanism. 
- Reduction of the motor torque as the sum based on the input and output inertias by 

initiating a time shift between the single maxima. 
- Approximate mutual balancing of input and output side torque share by similar but 

opposite course. 

Drive relief under static operating load 
- Reduction of peak values of the required driving torque by proper mechanism adaptation 

layout to a possibly highly variable course of a static output load. 
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Useful Effects of MCS/Mechanism-Combinations: Link Guidance Folie 8 / 33 
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Useful Effects of MCS/Mechanism-Combi.: Drive relief under dynamic operating load Folie 9 / 33 

( ) ( ) ( )inred,outinconst,redin ,tMtJtM ϕ+ϕ⋅= 

Drive torque only for constant transmission ratios Drive torque for non-constant transmission ratios 

( ) ( ) ( ) ( ) ( ) ( )inred,out
2
ininred2

1
ininredin ,tMtJtJtM ϕ+ϕ⋅ϕ′⋅+ϕ⋅ϕ= 
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Differential equation  

( )indUU
dt
dILIR −=⋅+⋅   

Introduction of  
normalized Variables 

iII nom ⋅=     and    uUU nom ⋅=  
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Motor Model with Simplification as a DC Motor Folie 12 / 33 
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Differential equation of the Motor 

( )( )iuuK
Tdt

di
indR

R
−−=

1
 

Insertion of u into the differential equation of 
the motor leads to 
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Differential Equations of Motor and Current Controller Folie 13 / 33 

Differential equation of the controller 
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Linear differential equation of 2nd Order 

indRdem
iR

R

iR

R

R

pR
2

2
uKi

TT
Ki

TT
K

dt
di

T
KK1

dt
id

−
⋅

=
⋅

+






 ⋅+
+  

Solution statement for homogeneous solution 

t2
2

2
tt eC

dt
id  ;eC

dt
di  ;eCi λλλ λ⋅=λ⋅=⋅=  

Insertion of the solution statement into the 
homogeneoues differential equation yields 
the characteristic polynomial 

( )
0

TT
K

T
KK1

Ri

R

R

pR2 =
⋅

+
+

λ+λ  

The controller parameters Kp and Ti have to be  
 determined in an optimum way 
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Characteristic polynomial of simulation model 
including motor and current controller model 
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Characteristic polynomial of damped single 
degree of freedom system  

02 2
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The simulation model including motor and 
current controller model will behave identically 
to the damped single degree of freedom system 
if both polynomials are identical! 
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Characteristic polynomial and pole placement   
for damping ratio 1=ϑ   
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Current Controller Model: PI-Controller with “anti wind-up” 

The tuning frequency ω0 must be given in  
 a meaningful way by the user!  
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Mechanical differential equation system: 

( ) ( )( )Mot21K21K1Mot MkcJ −ϕ−ϕ⋅+ϕ−ϕ⋅−=ϕ⋅   

( ) ( )( )Load21K21K2red MkcJ +ϕ−ϕ⋅+ϕ−ϕ⋅=ϕ⋅   
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Natural frequency of the mechanical system: 
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Lagrange Formalism  
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 Differential equation of rigid mechanisms: 
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Equations of Motion for Mechanisms Using Lagrange Formalism Folie 19 / 33 

On the motor shaft reduced moment of inertia 
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On the motor shaft reduced moment of inertia 
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Diffential equation of rigid mechanisms: 
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Drive Train Without Mechanism (I) Folie 20 / 33 

? New equation, neglecting torque Mpro: 
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Problem statement: 
Optimum gearbox ratio iGb considering that JGb 
depends on iGb. 
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Drive Train Without Mechanism (II) Folie 21 / 33 

Relationship between output and motor motion: 
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Schematic of the Drive System With varying Load Inertia Folie 22 / 33 

)(tmotϕ

)t(inϕ

iRG JGb 

Jred(ϕin) 

Mechanism 

JAo 

Min Mout Mpro 

)t(outϕ
Jmot 

Mmot 



B.Corves, 14.06.2015, Mechanism and Drive Synthesis Lecture, TrISToMM 2015  

   

Optimal Transmission Ratio for the Reduction Gear Folie 23 / 33 

For typical gearbox series: out,Gb
2
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The motor torque can be determined as follows: 
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2 System Modelling 
 
 
 
2.1 General Considerations 
2.2 Motor Simulation Models 
2.3 Control of Electric Drives and Mechanisms 
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Complete Matlab/Simulink©-Model 
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2 System Modelling 
 
 
 
2.1 General Considerations 
2.2 Motor Simulation Models 
2.3 Control of Electric Drives and Mechanisms 
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